Abstract

Recent advances in basic and clinical studies have identified Rho kinase (ROCK) as an important target potentially implicated in a variety of cardiovascular diseases and ROCK inhibitors were considered as a pharmacological strategy to prevent and treat cardiovascular diseases. To screen the small molecule compound library against ROCK, a high throughput screening (HTS) campaign was carried out using immobilized metal affinity for phosphochemicals (IMAP)-based time-resolved fluorescence resonance energy transfer (TR-FRET) assay. Z' value and signal to background (S/B) ratio were achieved at 0.76 and 5.27 for the pilot library screening of the most diverse set consisting of 15,040 compounds with a reasonable reconfirmation rate. From this screening campaign, four novel scaffolds, such as 3- nitropyridine, 4-methoxy-1,3,5,-triazine, naphthalene-1,4-dione, and 2,3-dihydro-1H-pyrrolo[2,3-b]quinoxaline, were yielded. Particularly, we found that 3-nitropyridine derivatives possess potent inhibitory activity and selectivity for ROCK. Our findings provide important information for the design of novel ROCK inhibitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.