Abstract

Bisphenol A (BPA) is used as an industrial raw material for polycarbonate plastics and epoxy resins; however, various concerns have been reported regarding its status as an endocrine-disrupting chemical. BPA interacts not only with oestrogen receptors (ERs) but constitutive androstane receptor, pregnane X receptor, and oestrogen-related receptor γ (ERRγ); therefore, the bisphenol structure represents a privileged structure for the nuclear-receptor superfamily. Here, we screen 127 BPA-related compounds by competitive-binding assay using [3H]oestradiol and find that 20 compounds bind to ERα with high affinity. We confirm most of these as ERα agonists; however, four compounds, including bisphenol M and bisphenol P act as novel antagonists. These structures harbour three benzene rings in tandem with terminal hydroxy groups at para-positions, with this tandem tri-ring bisphenol structure representing a novel privileged structure for an ERα antagonist. Additionally, we perform an ab initio calculation and develop a new clipping method for halogen bonding or non-covalent interaction using DV-Xα evaluation for biomolecules.

Highlights

  • Bisphenol A [BPA; HO-C6H4-C(CH3CH3)-C6H5-OH] is a chemical used in the production of polycarbonate plastics and epoxy resins; maternal exposure to BPA is considered a developmental and behavioural risk later in life in humans and model animals

  • [3H]E2 against ERα to evaluate 127 commercially available bisphenol or benzylphenol derivatives, some of which are used as industrial raw materials for polycarbonate plastics

  • We found that 70 compounds (>55% of the compounds tested) bound to the ligand-binding domain (LBD) of ERα responsible for ligand-dependent activation function

Read more

Summary

Introduction

Bisphenol A [BPA; HO-C6H4-C(CH3CH3)-C6H5-OH] is a chemical used in the production of polycarbonate plastics and epoxy resins; maternal exposure to BPA is considered a developmental and behavioural risk later in life in humans and model animals. The crystal structure of the BPA–ERRγ complex is the first of an EDC-bound nuclear receptor and shows multiple intermolecular interactions via benzene rings that promote BPA binding in the ligand-binding pocket of ERRγ21. These findings imply that bisphenol and/or benzylphenol structures represent privileged structures for the nuclear-receptor superfamily, with this concept first introduced in 1988 and still recognized as a useful definition for drug-target leads in the field of medicinal chemistry[22,23]. The aim of this study is to confirm that bisphenol and/or benzylphenol structures are privileged structures for ERα binding and demonstrate the efficacy of our method for assessing utility of halogen bonds to promote ligand binding

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call