Abstract

Glucocorticoids (GCs) have been used in the treatment of sepsis because of their potent anti-inflammatory effects. However, their clinical efficacy against sepsis remains controversial because of glucocorticoid receptor (GR) downregulation and side effects. Herein, we designed and synthesized 30 ocotillol derivatives and evaluated their anti-inflammatory activities. Ocotillol 24(R/S) differential isomers were stereoselective in their pharmacological action. Specifically, 24(S) derivatives had better anti-inflammatory activity than their corresponding 24(R) derivatives. Compound 20 most effectively inhibited NO release (85.97% reduction), and it exerted dose-dependent inhibitory effects on interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels. Mechanistic studies revealed that compound 20 reduces the degradation of GR mRNA and GR protein. Meanwhile, compound 20 inhibited the activation of nuclear factor-κB (NF-κB) signaling, thereby inhibiting the nuclear translocation of p65 and attenuating the inflammatory response. In vivo studies revealed that compound 20 attenuated hepatic, pulmonary, and renal pathology damage in mice with sepsis and suppressed the production of inflammatory mediators. These results indicated that compound 20 is a promising lead compound for designing and developing anti-sepsis drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.