Abstract
Targeting the nuclear receptor RORγt is thought to be effective in autoimmune disorders. Tertiary sulfonamide 1 was found to be a potent RORγt inverse agonist previously. However, the high hepatic clearance value limits its druggability. In this study, we designed and synthesized a series of N-sulfonamide-tetrahydroquinolines by molecular modeling and scaffold hopping strategy, aiming at improving the metabolic stabilities. Detailed SAR exploration led to identification of potent RORγt inverse agonists such as 13 with moderate binding affinity and inhibitory activity of Th17 cell differentiation. Binding mode of 13 with RORγt-LBD was revealed by molecular docking. Moreover, 13 showed lower intrinsic clearance in mouse liver microsomes compared with 1 and potent in vivo efficacy and safety in psoriasis models, which can be used as a good starting point for the further optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.