Abstract

The ligands for many olfactory receptors remain largely unknown despite successful heterologous expression of these receptors. Understanding the molecular receptive range of olfactory receptors and deciphering the olfactory recognition code are hampered by the huge number of odorants and large number of olfactory receptors, as well as the complexity of their combinatorial coding. Here, we present an in silico screening approach to find additional ligands for a mouse olfactory receptor that allows improved definition of its molecular receptive range. A virtual library of 574 odorants was screened against a mouse olfactory receptor MOR42-3. We selected the top 20 candidate ligands using two different scoring functions. These 40 odorant candidate ligands were then tested in vitro using the Xenopus oocyte heterologous expression system and two-electrode voltage clamp electrophysiology. We experimentally confirmed 22 of these ligands. The candidate ligands were screened for both agonist and antagonist activity. In summary, we validated 19 agonists and 3 antagonists. Two of the newly identified antagonists were of low potency. Several previously known ligands (mono- and dicarboxylic acids) are also confirmed in this study. However, some of the newly identified ligands were structurally dissimilar compounds with various functional groups belonging to aldehydes, phenyls, alkenes, esters and ethers. The high positive predictive value of our in silico approach is promising. We believe that this approach can be used for initial deorphanization of olfactory receptors as well as for future comprehensive studies of molecular receptive range of olfactory receptors.

Highlights

  • The olfactory receptor gene family is the largest gene family in the mammalian genome [1,2]

  • In order to find additional ligands for mouse olfactory receptor MOR42-3, we used an in silico, structure based virtual ligand screening (VLS) approach

  • Our results indicate that that both scoring functions have a similar positive predictive value (PPV) of 55% (PPVs = 10+1/20 and PPVmfs = 9+2/20, respectively) and that both can be used for future screening and evaluation studies

Read more

Summary

Introduction

The olfactory receptor gene family is the largest gene family in the mammalian genome [1,2]. There are approximately 1035 mouse olfactory receptors. In order to study chemical recognition and olfactory coding, we need to deorphanize olfactory receptors and define their molecular receptive ranges. Approximately 100 mouse olfactory receptors have been deorphanized [5,6,8,9,10,11,12,13,14]. In the largest study so far, 52 out of 219 mouse olfactory receptors (23%) screened in vitro by Saito et al, were deorphanized using a selected set of 93 odorants [6]. The full molecular receptive ranges of these receptors, have yet to be investigated

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.