Abstract

The current study is aimed to perform structure-based screening of FDA-approved drugs that can act as novel inhibitor of the 11beta- hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. Structural analogs of carbenoxolone (CBX) were selected from DrugBank database and their Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) parameters were investigated by SwissADME. Molecular docking of CBX analogs against 11β-HSD1 was performed by AutoDock tool, their binding patterns were visualized using PyMOL and the interacting amino acids were determined by ProteinPlus tool. Molecular dynamics simulation was performed on the docked structure of 11β-HSD1 (Protein Data Bank (PDB) code: 2ILT) using GROMACS 2018.1. The binding energies of hydrocortisone succinate, medroxyprogesterone acetate, testolactone, hydrocortisone cypionate, deoxycorticosterone acetate, and hydrocortisone probutate were lower than that of substrate corticosterone. The molecular dynamics simulation of 11β-HSD1 and hydrocortisone cypionate docked structure showed that it formed a stable complex with the inhibitor. The Root mean square deviation (RMSD) of the protein (0.37 ± 0.05nm) and ligand (0.41 ± 0.06nm) shows the stability of the ligand-protein interaction. The docking study revealed that hydrocortisone cypionate has a higher binding affinity than carbenoxolone and its other analogs. The molecular dynamics simulation indicated the stability of the docked complex of 11β-HSD1 and hydrocortisone cypionate. These findings indicate the potential use of this FDA approved drug in the treatment of type 2 diabetes. However, validation by in vitro inhibitory studies and clinical trials on type 2 diabetes patients is essential to confirm the current findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call