Abstract

Bioactive peptide natural products are an important source of therapeutics. Prominent examples are the antibiotic penicillin and the immunosuppressant cyclosporine which are both produced by fungi and have revolutionized modern medicine. Peptide biosynthesis can occur either non-ribosomally via large enzymes referred to as non-ribosomal peptide synthetases (NRPS) or ribosomally. Ribosomal peptides are synthesized as part of a larger precursor peptide where they are posttranslationally modified and subsequently proteolytically released. Such peptide natural products are referred to as ribosomally synthesized and posttranslationally modified peptides (RiPPs). Their biosynthetic pathways have recently received a lot of attention, both from a basic and applied research point of view, due to the discoveries of several novel posttranslational modifications of the peptide backbone. Some of these modifications were so far only known from NRPSs and significantly increase the chemical space covered by this class of peptide natural products. Latter feature, in combination with the promiscuity of the modifying enzymes and the genetic encoding of the peptide sequence, makes RiPP biosynthetic pathways attractive for synthetic biology approaches to identify novel peptide therapeutics via screening of de novo generated peptide libraries and, thus, exploit bioactive peptide natural products beyond their direct use as therapeutics. This review focuses on the recent discovery and characterization of novel RiPP biosynthetic pathways in fungi and their possible application for the development of novel peptide therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call