Abstract

Flt3 is an oncogenic kinase involved in different types of leukemia. It is most prominently associated with acute myeloid leukemia (AML). Flt3-specific inhibitors have shown promising results in interfering with AML prompting us to model this interesting target. We implemented ligand-based, QSAR-guided, pharmacophore exploration combined with novel structure-based computational workflow based on docking-based comparative intermolecular contacts analysis (db-CICA) combined with homology modelling to explore the pharmacophoric features of 93 diverse cyclic Flt3 inhibitors. The resulting pharmacophore models were used as virtual search queries to scan the National Cancer Institute (NCI) database for novel Flt3 inhibitory leads. Ten hits of novel scaffolds were captured showing anti-Flt3 IC50 values ranging from 1.2 to 14.7 μM. Interestingly, six of them illustrated low micromolar and submicromolar potencies against the mutated active form of Flt3 (Flt3D835Y) and the related vascular endothelial growth factor receptor 2 (VEGFR2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.