Abstract

To identify some novel fatty acid hydrolase (FAAH) inhibitors that may contribute to the treatment of Alzheimer's disease (AD). In-silico pharmacophore modelling including ligand-based pharmacophore modelling, virtual screening, molecular docking, molecular dynamics modelling, density functional theory and in-silico pharmacokinetics and toxicological studies were employed for the retrieving of novel FAAH inhibitors. Further, these compounds were evaluated for FAAH inhibitory activity using an in vitro enzymatic assay, and later, an in vivo streptozotocin (STZ)-induced AD model was examined in mice. Using an in-silico pharmacophore modelling process with molecular docking, molecular dynamic modelling, density functional theory and in-silico pharmacokinetics and toxicological analysis, three compounds (NCI1697, NCI1001and NCI1041) were retrieved. The in vitro FAAH activity assay kit (Fluorometric) was employed to examine the FAAH inhibitory activity of identified compounds. Further, in in-vivo studies, treatment with these compounds at 2.5 and 5mg/kg doses orally for 10days restored the STZ-induced memory deficits in mice, as evident in the radial arm and Morris's water maze assays. Also, these compounds ameliorated oxidative stress profiles and neuroinflammatory biomarkers in mice. Interestingly, STZ-induced disturbance in gene expressions related to AD pathophysiology including endocannabinoid signalling neuroinflammation and neuroimmune signalling were also restored after the treatment. Histopathological findings also confirmed the improvement in the organization of cells and reduction in vacuolation in mice hippocampal tissue in treated mice. The in-silico, in vitro and in-vivo findings collectively indicated that these compounds have impressive FAAH inhibitory activity and may be developed as therapeutic agents in the management of AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.