Abstract
Enlightened by the available structural biology information, a novel series of dihydrothiopyrano[4,3-d]pyrimidine derivatives were rationally designed via scaffold hopping and molecular hybridization strategies. Notably, compound 20a yielded exceptionally potent antiviral activities (EC50 = 4.44-54.5 nM) against various HIV-1 strains and improved resistance profiles (RF = 0.5-5.6) compared to etravirine and rilpivirine. Meanwhile, 20a exhibited reduced cytotoxicity (CC50 = 284 μM) and higher SI values (SI = 5210-63992). Molecular dynamics simulations were performed to rationalize the distinct resistance profiles. Besides, 20a displayed better solubility (sol. = 12.8 μg/mL) and no significant inhibition of the main CYP enzymes. Furthermore, 20a was characterized for prominent metabolic stability and in vivo safety properties. Most importantly, the hERG inhibition profile of 20a (IC50 = 19.84 μM) was a remarkable improvement. Overall, 20a possesses huge potential to serve as a promising drug candidate due to its excellent potency, low toxicity, and favorable drug-like properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.