Abstract

In the present investigation, a series of dimethoxy or methylenedioxy substituted-cinnamamide derivatives containing tertiary amine moiety (N. N-Dimethyl, N, N-diethyl, Pyrrolidine, Piperidine, Morpholine) were synthesized and evaluated for cholinesterase inhibition and blood-brain barrier (BBB) permeability. Although their chemical structures are similar, their biological activities exhibit diversity. The results showed that all compounds except for those containing morpholine group exhibited moderate to potent acetylcholinesterase inhibition. Preliminary screening of BBB permeability shows that methylenedioxy substituted compounds have better brain permeability than the others. Compound 10c, containing methylenedioxy and pyrrolidine side chain, showed a better acetylcholinesterase inhibition (IC50: 1.52±0.19 μmol/L) and good blood-brain barrier permeability. Further pharmacokinetic investigation of compound 10c using ultra high performance liquid chromatography-mass/mass spectrometry (UPLC-MS/MS) in mice showed that compound 10c in brain tissue reached its peak concentration (857.72±93.56 ng/g) after dosing 30 min. Its half-life in the serum is 331 min (5.52 h), and the CBrain/CSerum at various sampling points is ranged from 1.65 to 4.71(Mean: 2.76) within 24 hours. This investigation provides valuable information on the chemistry and pharmacological diversity of cinnamic acid derivatives and may be beneficial for the discovery of central nervous system drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.