Abstract

The glycine transporter 1 (GlyT1) has emerged as a key novel target for the treatment of schizophrenia. Herein, we report the synthesis and biological evaluation of aminotetralines and aminochromanes as novel classes of competitive GlyT1 inhibitors. Starting from a high-throughput screening hit, structure-activity relationship studies led first to the discovery of aminotetralines displaying high GlyT1 potency and selectivity, with favorable pharmacokinetic properties. Systematic investigations of various parameters (e.g., topological polar surface area, number of hydrogen bond donors) guided by ex vivo target occupancy evaluation resulted in lead compounds possessing favorable brain penetration properties as for (7 S,8 R)-27a. Further optimization revealed compounds with reduced efflux liabilities as for aminochromane 51b. In an in vivo efficacy model (7 S,8 R)-27a, dose-dependently reversed L-687,414 induced hyperlocomotion in mice with an ED50 of 0.8 mg/kg. All these results suggest (7 S,8 R)-27a and 51b as new GlyT1 inhibitors worthy of further profiling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.