Abstract

A series of 2,5-dihydroxyterephthalamide derivatives were designed, synthesized and evaluated as multifunctional agents for the treatment of Alzheimer's disease. In vitro assays demonstrated that most of the derivatives exhibited good multifunctional activities. Among them, compound 9d showed the best inhibitory activity against both RatAChE and EeAChE (IC50 = 0.56 μM and 5.12 μM, respectively). Moreover, 9d exhibited excellent inhibitory effects on self-induced Aβ1-42 aggregation (IC50 = 3.05 μM) and Cu2+-induced Aβ1-42 aggregation (71.7% at 25.0 μM), and displayed significant disaggregation ability to self- and Cu2+-induced Aβ1-42 aggregation fibrils (75.2% and 77.2% at 25.0 μM, respectively). Furthermore, 9d also showed biometal chelating abilities, antioxidant activity, anti-neuroinflammatory activities and appropriate BBB permeability. These multifunctional properties highlight 9d as promising candidate for further studies directed to the development of novel drugs against AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call