Abstract

We describe the design, organic synthesis, and characterization, including X-ray crystallography, of a series of novel analogues of the clinically used antitumor agent temozolomide, together with their in vitro biological evaluation. The work has resulted in the discovery of a new series of anticancer imidazotetrazines that offer the potential to overcome the resistance mounted by tumors against temozolomide. The rationally designed compounds that incorporate a propargyl alkylating moiety and a thiazole ring as isosteric replacement for a carboxamide, are readily synthesized (gram-scale), exhibit defined solid-state structures, and enhanced growth-inhibitory activity against human tumor cell lines, including MGMT-expressing and MMR-deficient lines, molecular features that confer tumor resistance. The cell proliferation data were confirmed by clonogenic cell survival assays, and DNA flow cytometry analysis was undertaken to determine the effects of new analogues on cell cycle progression. Detailed 1H NMR spectroscopic studies showed that the new agents are stable in solution, and confirmed their mechanism of action. The propargyl and thiazole substituents significantly improve potency and physicochemical, drug metabolism and permeability properties, suggesting that the thiazole 13 should be prioritized for further preclinical evaluation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.