Abstract

It is well known that complementarity functions play an important role in dealing with complementarity problems. In this paper, we propose a few new classes of complementarity functions for nonlinear complementarity problems and second-order cone complementarity problems. The constructions of such new complementarity functions are based on discrete generalization which is a novel idea in contrast to the continuous generalization of Fischer–Burmeister function. Surprisingly, these new families of complementarity functions possess continuous differentiability even though they are discrete-oriented extensions. This feature enables that some methods like derivative-free algorithm can be employed directly for solving nonlinear complementarity problems and second-order cone complementarity problems. This is a new discovery to the literature and we believe that such new complementarity functions can also be used in many other contexts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call