Abstract

Several natural/synthetic molecules having a structure similar to 1H-isochromen- 1-ones have been reported to display promising antioxidants and platelet aggregation inhibitory activity. Isocoumarin (1H-2-benzopyran-1-one) skeleton, either whole or as a part of the molecular framework, has been explored for its antioxidant or antiplatelet activities. Based on the literature, a new prototype, i.e., 3-phenyl-1H-isochromen-1-ones based compounds, has been rationalized to possess both antioxidant as well as antiplatelet activities. Consequently, no reports are available regarding its inhibition either by cyclooxygenase-1 (COX-1) enzyme or by arachidonic acid (AA)-induced platelet aggregation. This prompted us to investigate 3-phenyl-1H-isochromen-1-ones towards antioxidant and antiplatelet agents. The goal of this work was to identify new 3-phenyl-1H-isochromen-1-ones based compounds via synthesis of a series of analogues, followed by performing in vitro antioxidant as well as AA-induced antiplatelet activities. Then, identification of potent compounds by SAR and molecular docking studies was carried out. Out of all synthesized 3-phenyl-1H-isochromen-1-ones analogues, five compounds showed 7-fold to 16-fold more highly potent antioxidant activities than ascorbic acid. Altogether, ten 3-phenyl-1H-isochromen- 1-one analogues displayed antioxidant activities in 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Almost all the 3-phenyl-1H-isochromen-1-one analogues exhibited potent AA-induced antiplatelet activity; few of them displayed 7-folds more activity as compared to aspirin. Further, in silico analysis validated the wet results. We disclose the first detailed study for the identification of 3-phenyl-1H-isochromen-1-one analogues as highly potent antioxidant as well as antiplatelet agents. The article describes the scaffold designing, synthesis, bioevaluation, structure-activity relationship, and in silico studies of a pharmaceutically privileged bioactive 3-phenyl-1H-isochromen-1-one class of heterocycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call