Abstract
Nanos are conserved genes involved in germline cell specification and differentiation. However, little is known about the role of different members of Nanos family in germ cell development in mollusks. In the present study, we conducted genome-wide identification of Nanos family in an economically important scallop Patinopecten yessoensis, and detected their expression in adult tissues and during early development. Two Nanos genes (PyNanos1, PyNanos2/3) were identified, both of which have the N-terminal NOT1-interacting motif and C-terminal (CCHC)2 zinc finger domain. Expression profiles showed that PyNanos1 and PyNanos2/3 were primarily expressed in the gonads, with PyNanos1 being localized in the oogonia, oocytes, and spermatogonia, while PyNanos2/3 being specifically in spermatogonia. The results suggest that PyNanos are germ cell specific and may play crucial roles in gametogenesis in the scallop. PyNanos1 is a maternal gene, which is distributed uniformly at early cleavage, and restricted to 2-3 cell clusters from blastulae to trochophore larvae, suggesting its potential role in the formation of PGCs. Zygotically expressed PyNanos2/3 displayed a similar signal with PyNanos1 in the trochophore larvae, suggesting it may also participate in the formation and/or maintenance of PGCs. This study will benefit germplasm exploitation and conservation in bivalves, and facilitate a better understanding of the evolution of Nanos family and the role of different Nanos in germ cell development in mollusks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.