Abstract

Fibroblast growth factor receptor (FGFR) is an attractive target for cancer therapy, but existing FGFR inhibitors appear to hardly meet the demand for clinical application. Herein, a number of irreversible covalent FGFR inhibitors were designed and synthesized by selecting several five- and six-membered azaheterocycles as parent scaffold with different substituents to take over the hydrophobic region in the active pocket of FGFR proteins. Among the resulting target compounds, III-30 showed the most potent effect on enzyme activity inhibition and anti-proliferative activity against the tested cancer cell lines. Significantly, III-30 could inhibit the enzyme activity by achieving irreversible covalent binding with FGFR1 and FGFR4 proteins. It could also regulate FGFR-mediated signaling pathway and mitochondrial apoptotic pathway to promote cancer cell apoptosis and inhibit cancer cell invasion and metastasis. Moreover, III-30 had a good metabolic stability and showed relatively potent anti-tumor activity in the MDA-MB-231 xenograft tumor mice model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call