Abstract
Current drugs for treating human cytomegalovirus (HCMV) infections are limited by resistance and treatment-associated toxicities. In developing mechanistically novel HCMV antivirals, we discovered an N-benzyl hydroxypyridone carboxamide antiviral hit (8a) inhibiting HCMV in submicromolar range. We describe herein the structure–activity relationship (SAR) for 8a, and the characterization of potent analogs for cytotoxicity/cytostatic property, the preliminary mechanism of action, and the absorption, distribution, metabolism and excretion (ADME) properties. The SAR revealed a few pharmacophore features conferring optimal antiviral profile, including the 5-OH, the N-1 benzyl, at least one –CH2− in the linker, and a di-halogen substituted phenyl ring in the amide moiety. In the end, we identified numerous analogs with sub-micromolar antiviral potency and good selectivity index. The preliminary mechanism of action characterization used a pUL89-C biochemical endonuclease assay, a virus entry assay, a time-of-addition assay, and a compound withdrawal assay. ADME profiling measuring aqueous solubility, plasma and liver microsomal stability, and parallel artificial membrane permeability assay (PAMPA) permeability demonstrated largely favorable drug-like properties. Together, these studies validate the N-benzyl hydroxypyridone carboxamide as a viable chemotype for potent and mechanistically distinct antivirals against HCMV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.