Abstract

α9-Containing nicotinic acetylcholine receptors (nAChRs) are key targets for the treatment of neuropathic pain. α-Conotoxin RgIA4 is a peptide antagonist of human α9α10 nAChRs with high selectivity. However, structural rearrangement reveals a potential liability for clinical applications. We herein report our designer RgIA analogues stabilized by methylene thioacetal as nonopioid analgesic agents. We demonstrate that replacing disulfide loop I [CysI-CysIII] with methylene thioacetal in the RgIA skeleton results in activity loss, whereas substitution of loop II [CysII-CysIV] can be accommodated. The lead molecule, RgIA-5524, exhibits highly selective inhibition of α9α10 nAChRs with an IC50 of 0.9 nM and much reduced degradation in human serum. In vivo studies showed that RgIA-5524 relieves chemotherapy-induced neuropathic pain in wild type but not α9 knockout mouse models, demonstrating that α9-containing nAChRs are necessary for the therapeutic effects. This work highlights the application of methylene thioacetal as a disulfide surrogate in conotoxin-based, disulfide-rich peptide drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call