Abstract
The CDK8-cyclin C complex is an important anti-tumor target, but unlike CDK8, cyclin C remains undruggable. Modulators regulating cyclin C activity directly are still under development. Here, a series of hydrophobic tagging-based degraders of the CDK8-cyclin C complex were designed, synthesized, and evaluated to identify the first dual degrader, LL-K8-22, which induced selective and synchronous degradation of CDK8 and cyclin C. Proteomic and immunoblot studies exhibited that LL-K8-22 significantly degraded CDK8 without reducing CDK19 and did not degrade other cyclin proteins except cyclin C. Moreover, LL-K8-22 showed enhanced anti-proliferative effects over its parental molecule, BI-1347, with potency increased by 5-fold in MDA-MB-468 cells. LL-K8-22 exhibited more pronounced effects on CDK8-cyclin C downstream signaling than BI-1347, suppressing STAT1 phosphorylation more persistently. RNA-sequencing analysis revealed that LL-K8-22 inhibited E2F- and MYC-driven carcinogenic transcriptional programs. Overall, LL-K8-22 is the first-in-class degrader of cyclin C and would be useful for studying the unknown functions of cyclin C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.