Abstract

Circulating LH is essential for the development and function of the primate corpus luteum (CL) during the menstrual cycle. However, the cellular and molecular processes whereby LH controls luteal structure and function are poorly understood. Therefore, studies were initiated to identify gene products that are regulated by gonadotrophin in the monkey CL. Rhesus monkeys either were untreated (controls, CTRL; n = 3) or received the GnRH antagonist Antide (ANT; 3 mg/kg body weight, n = 3) to inhibit pituitary LH secretion on day 6 of the luteal phase in spontaneous menstrual cycles. The CL was removed 24 h later. RNA was extracted and converted to cDNA. The CTRL and ANT cDNA were differentially labelled with fluorescent dyes (Cy3-CTRL and Cy5-ANT) and hybridized onto microarrays containing 11,600 human cDNA. The selected cDNA were analysed further via semi-quantitative RT-PCR (a) to validate the microarray results and (b) to determine if their expression varies in the CL (n = 3/stage) between the mid (day 6-8), late (day 14-16), or very late (day 18-19, menses) luteal phase of the natural cycle. After normalization of the fluorescence data, 206 cDNA (1.8% of the total) exhibited > or = 2-fold change in expression after ANT. Of the 25 cDNA exhibiting a > or = 6-fold change, 6 were up-regulated and 19 were down-regulated. Twenty-two of these 25 cDNA were validated by RT-PCR as differentially expressed in the ANT group, relative to the CTRL group, and 11 of 25 changed (P < 0.05) correspondingly in the late-to-very late luteal phase. Thus, we have identified gene products that are regulated by gonadotrophin in the primate CL that may be important in luteal regression during the menstrual cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.