Abstract

New Delhi metallo-β-lactamase-1 (NDM-1) poses a threat to public health due to its capability to hydrolyze nearly all β-lactam antibiotics, leaving limited treatment options for NDM-1 positive pathogens. Regrettably, there are presently no effective NDM-1 inhibitors in clinical use. This compels us to seek new compounds to combat multi-drug resistant bacterial infections (MDR). In our study, Zndm19 was identified as a new NDM-1 inhibitor through virtual screening and an NDM-1 enzyme activity inhibition assay. Subsequently, we employed the checkerboard method, time-killing assay, and combined disk test to investigate the synergistic bactericidal efficacy of Zndm19 in combination with meropenem (MEM). Meanwhile, molecular docking and site-directed mutagenesis were conducted to uncover the crucial amino acid residues engaged in Zndm19 binding. Finally, we established a mice peritonitis infection model to assess the synergistic effect of Zndm19 and MEM in vivo. Our findings demonstrated that 16 µg/mL of Zndm19 inhibited NDM-1 activity without affecting NDM-1 expression, restoring the bactericidal activity of MEM against NDM-1-positive Escherichia coli in vitro. Furthermore, MET-67, ASP-124, HIS-189, and HIS-250 amino acid residues constituted the active site of Zndm19 in NDM-1. Importantly, this combination therapy exhibited synergistic anti-infection activity in the mice peritonitis infection model, leading to an approximate 60% increase in survival rates and reduction of tissue bacterial load, effectively combating bacterial infection in vivo. In summary, our research validates that the synthetic novel NDM-1 inhibitor Zndm19 holds promise as a drug to treat drug-resistant bacterial infections, especially those harboring NDM-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call