Abstract
Primase DnaG is an essential bacterial enzyme that synthesizes short ribonucleotide primers required for chromosomal DNA replication. Inhibitors of DnaG can serve as leads for development of new antibacterials and biochemical probes. We recently developed a nonradioactive in vitro primase-pyrophosphatase assay to identify and analyze DnaG inhibitors. Application of this assay to DnaG from Bacillus anthracis (Ba DnaG), a dangerous pathogen, yielded several inhibitors, which include agents with DNA intercalating properties (doxorubicin and tilorone) as well as those that do not intercalate into DNA (suramin). A polyanionic agent and inhibitor of eukaryotic primases, suramin, identified by this assay as a low-micromolar Ba DnaG inhibitor, was recently shown to be also a low-micromolar inhibitor of Mycobacterium tuberculosis DnaG (Mtb DnaG). In contrast, another low-micromolar Ba DnaG inhibitor, tilorone, is much more potent against Ba DnaG than against Mtb DnaG, despite homology between these enzymes, suggesting that DnaG can be targeted selectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.