Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19), in which the main protease (Mpro) plays an important role in the virus's life cycle. In this work, two representative peptide inhibitors (11a and PF-07321332) were selected, and their interaction mechanisms of non-covalently bound with Mpro were firstly investigated by means of molecular dynamical simulation. Then, using the fragment-based drug design method, some fragments from the existing SARS-CoV and SARS-CoV-2 inhibitors were selected to replace the original P2 and P3 fragments, resulting in some new molecules. Among them, two molecules (O-74 and N-98) were confirmed by molecular docking and molecular dynamics simulation, and ADMET properties prediction was employed for further verification. The results shown that they presented excellent activity and physicochemical properties, and had the potential to be new inhibitors for SARS-CoV-2 main protease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.