Abstract

Encouraged by our earlier discovery of N1-selective inhibitors, the 150-cavity of influenza virus neuraminidases (NAs) could be further exploited to yield more potent oseltamivir derivatives. Herein, we report the design, synthesis and biological evaluation of a series of novel oseltamivir derivatives via the structural modifications at C5-NH2 of oseltamivir targeting 150-cavity. Among them, compound 5c bearing 4-(3-methoxybenzyloxy)benzyl group exhibited the most potent activity, which was lower or modestly improved activities than oseltamivir carboxylate (OSC) against N1 (H1N1), N1 (H5N1) and N1 (H5N1-H274Y). Specifically, there was 30-fold loss of activity against the wild-type strain H1N1. However, 5c displayed 4.85-fold more potent activity than OSC against H5N1-H274Y NA. Also, 5c demonstrated low cytotoxicity invitro and no acute toxicity in mice. Molecular docking studies provided insights into the high potency of 5c against N1 and N1-H274Y mutant NAs. Besides, the in silico prediction of physicochemical properties and CYP enzymatic inhibitory ability of representative compounds were conducted to evaluate their drug-like properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call