Abstract

We report the discovery of gamma-ray emission from the Circinus galaxy using the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Circinus is a nearby (~4 Mpc) starburst with a heavily obscured Seyfert-type active nucleus, bipolar radio lobes perpendicular to the spiral disk, and kpc-scale jet-like structures. Our analysis of 0.1-100 GeV events collected during 4 years of LAT observations reveals a significant (~ 7.3 sigma) excess above the background. We find no indications of variability or spatial extension beyond the LAT point-spread function. A power-law model used to describe the 0.1-100 GeV gamma-ray spectrum yields a flux of (18.8+/-5.8)x10^{-9} ph cm^{-2} s^{-1} and photon index 2.19+/-0.12, corresponding to an isotropic gamma-ray luminosity of 3 x 10^{40} erg s^{-1}. This observed gamma-ray luminosity exceeds the luminosity expected from cosmic-ray interactions in the interstellar medium and inverse Compton radiation from the radio lobes. Thus the origin of the GeV excess requires further investigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.