Abstract

Locally released cytokines contribute to beta-cell dysfunction and apoptosis in type 1 diabetes. In vitro exposure of insulin-producing INS-1E cells to the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma leads to a significant increase in apoptosis. To characterize the genetic networks implicated in beta-cell dysfunction and apoptosis and its dependence on nitric oxide (NO) production, we performed a time-course microarray analysis of cytokine-induced genes in insulin-producing INS-1E cells. INS-1E cells were exposed in duplicate to IL-1beta + IFN-gamma for six different time points (1, 2, 4, 8, 12, and 24 h) with or without the inducible NO synthase (iNOS) blocker N(G)-monomethyl-L-arginine (NMA). The microarray analysis identified 698 genes as cytokine modified (>or=2.5-fold change compared with control) in at least one time point. Based on their temporal pattern of variation, the cytokine-regulated genes were classified into 15 clusters by the k-means method. These genes were further classified into 14 different groups according to their putative function. Changes in the expression of genes related to metabolism, signal transduction, and transcription factors at all time points studied indicate beta-cell attempts to adapt to the effects of continuous cytokine exposure. Notably, several apoptosis-related genes were modified at early time points (2-4 h) preceding iNOS expression. On the other hand, 46% of the genes modified by cytokines after 8-24 h were NO dependent, indicating the important role of this radical for the late effects of cytokines. The present results increase by more than twofold the number of known cytokine-modified genes in insulin-producing cells and yield comprehensive information on the role of NO for these modifications in gene expression. These data provide novel and detailed insights into the gene networks activated in beta-cells facing a prolonged immune assault.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.