Abstract

THE Galileo spacecraft has now passed close to Jupiter's largest moon—Ganymede—on two occasions, the first at an altitude of 838 km, and the second at an altitude of just 264 km. Here we report the discovery during these encounters of an internal magnetic field associated with Ganymede (the only other solid bodies in the Solar System known to have magnetic fields are Mercury, Earth and probably lo1). The data are consistent with a Ganymede-centred magnetic dipole tilted by ∼10° relative to the spin axis, and an equatorial surface-field strength of ∼750 nT. The magnetic field is strong enough to carve out a magnetosphere with clearly defined boundaries within Jupiter's magnetosphere. Although the observations require an internal field, they do not indicate its source. But the existence of an internal magnetic field should in itself help constrain models of Ganymede's interior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.