Abstract
Inhibition of the hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) represents a promising strategy for discovering next-generation treatments for renal anemia. We discovered DS44470011 in our previous study, which showed potent in vitro activity and in vivo efficacy based on HIF-PHD inhibition. However, DS44470011 was also found to exert genotoxic effects. By converting the biphenyl structure, which is suspected to be the cause of this genotoxicity, to a 1-phenylpiperidine structure, we were able to avoid genotoxicity and further improve the in vitro activity and in vivo efficacy. Furthermore, through the optimization of pyrimidine derivatives, we discovered DS-1093a, which has a wide safety margin with potent in vitro activity and an optimal pharmacokinetic profile. DS-1093a achieved an increase in hemoglobin levels in an adenine-induced rat model of chronic kidney disease after its continuous administration for 4 days.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.