Abstract

We introduced a terminal alkyne into the core structure of dolutegravir, resulting in the synthesis of 34 novel dolutegravir-1,2,3-triazole compounds through click chemistry. These compounds exhibited remarkable inhibitory activities against two hepatocellular carcinoma cell lines, Huh7 and HepG2. Notably, compounds 5e and 5p demonstrated exceptional efficacy, particularly against Huh7 cells, with IC50 values of 2.64 and 5.42 μM. Additionally, both compounds induced apoptosis in Huh7 cells, suppressed tumor cell clone formation, and elevated reactive oxygen species (ROS) levels, further promoting tumor cell apoptosis. Furthermore, compounds 5e and 5p activated the LC3 signaling pathway, inducing autophagy, and triggered the γ-H2AX signaling pathway, resulting in DNA damage in tumor cells. Compound 5e exhibited low toxicity, highlighting its potential as a promising anti-tumor drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call