Abstract

Abstract Glitches correspond to sudden jumps of rotation frequency (ν) and its derivative ( ) of pulsars, the origin of which remains not well understood yet, partly because the jump processes of most glitches are not well time-resolved. There are three large glitches of the Crab pulsar, detected in 1989, 1996, and 2017, which were found to have delayed spin-up processes before the normal recovery processes. Here we report two additional glitches of this pulsar that occurred in 2004 and 2011 for which we discovered delayed spin-up processes, and present refined parameters of the largest glitch, which occurred in 2017. The initial rising time of the glitch is determined as <0.48 hr. The two glitches that occurred in 2004 and 2011 had delayed spin-up time scales (τ 1) of 1.7 ± 0.8 days and 1.6 ± 0.4 days, respectively. We also carried out a statistical study of these five glitches with observed spin-up processes. We find that the Δν versus relation of these five glitches is similar to those with no detected delayed spin-up process, indicating that they are similar to the others in nature except that they have larger amplitudes. For these five glitches, the amplitudes of the delayed spin-up process ( ) and recovery process (Δν d2), their time scales (τ 1, τ 2), and permanent changes in spin frequency (Δν p) and total frequency step (Δν g) have positive correlations. From these correlations, we suggest that the delayed spin-up processes are common for all glitches, but are too short and thus difficult to be detected for most glitches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.