Abstract

Herein we describe the discovery of a novel series of cyclopropyl chromane-derived pyridopyrazine-1,6-dione γ-secretase modulators for the treatment of Alzheimer's disease (AD). Using ligand-based design tactics such as conformational analysis and molecular modeling, a cyclopropyl chromane unit was identified as a suitable heterocyclic replacement for a naphthyl moiety that was present in the preliminary lead 4. The optimized lead molecule 44 achieved good central exposure resulting in robust and sustained reduction of brain amyloid-β42 (Aβ42) when dosed orally at 10 mg kg-1 in a rat time-course study. Application of the unpaced isolated heart Langendorff model enabled efficient differentiation of compounds with respect to cardiovascular safety, highlighting how minor structural changes can greatly impact the safety profile within a series of compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.