Abstract

In this article, we introduce a novel type of spatio-temporal sequential patterns called Constricted Spatio-Temporal Sequential (CSTS) patterns and thoroughly analyze their properties. We demonstrate that the set of CSTS patterns is a concise representation of all spatio-temporal sequential patterns that can be discovered in a given dataset. To measure significance of the discovered CSTS patterns we adapt the participation index measure. We also provide CSTS-Miner: an algorithm that discovers all participation index strong CSTS patterns in event data. We experimentally evaluate the proposed algorithms using two crime-related datasets: Pittsburgh Police Incident Blotter Dataset and Boston Crime Incident Reports Dataset. In the experiments, the CSTS-Miner algorithm is compared with the other four state-of-the-art algorithms: STS-Miner, CSTPM, STBFM and CST-SPMiner. As the results of the experiments suggest, the proposed algorithm discovers much fewer patterns than the other selected algorithms. Finally, we provide the examples of interesting crime-related patterns discovered by the proposed CSTS-Miner algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.