Abstract

Mutations in NRAS promote tumorigenesis and drug resistance. As this protein is often considered an undruggable target, it is urgent to develop novel strategies to suppress NRAS for anticancer therapy. Recent reports indicated that a G-quadruplex (G4) structure formed in the untranslated region of NRAS mRNA can downregulate NRAS translation, suggesting a potential NRAS suppression strategy. Here, we developed a novel cell-based method for large-scale screening of NRAS G4 ligand using the G-quadruplex-triggered fluorogenic hybridization probe and successfully identified the clinically used agent Octenidine as a potent NRAS repressor. This compound suppressed NRAS translation, blocked the MAPK and PI3K-AKT signaling, and caused concomitant cell cycle arrest, apoptosis, and autophagy. It exhibited better antiproliferation effects over clinical antimelanoma agents and could inhibit the growth of NRAS-mutant melanoma in a xenograft mouse model. Our results suggest that Octenidine may be a prominent anti-NRAS-mutant melanoma agent and represent a new NRAS-mutant melanoma therapy option.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.