Abstract

The oriental fruit fly, Bactrocera dorsalis, is a devastating fruit fly pest in tropical and sub-tropical countries. Like other insects, this fly uses its chemosensory system to efficiently interact with its environment. However, our understanding of the molecular components comprising B. dorsalis chemosensory system is limited. Using next generation sequencing technologies, we sequenced the transcriptome of four B. dorsalis developmental stages: egg, larva, pupa and adult chemosensory tissues. A total of 31 candidate odorant binding proteins (OBPs), 4 candidate chemosensory proteins (CSPs), 23 candidate odorant receptors (ORs), 11 candidate ionotropic receptors (IRs), 6 candidate gustatory receptors (GRs) and 3 candidate sensory neuron membrane proteins (SNMPs) were identified. The tissue distributions of the OBP and CSP transcripts were determined by RT-PCR and a subset of nine genes were further characterized. The predicted proteins from these genes shared high sequence similarity to Drosophila melanogaster pheromone binding protein related proteins (PBPRPs). Interestingly, one OBP (BdorOBP19c) was exclusively expressed in the sex pheromone glands of mature females. RT-PCR was also used to compare the expression of the candidate genes in the antennae of male and female B. dorsalis adults. These antennae-enriched OBPs, CSPs, ORs, IRs and SNMPs could play a role in the detection of pheromones and general odorants and thus could be useful target genes for the integrated pest management of B. dorsalis and other agricultural pests.

Highlights

  • Chemoreception plays a crucial role in insects such as agricultural pests, disease vectors and social insects

  • Our results show the presence of a number of chemosensory gene transcripts in B. dorsalis and the presence of antennae-specific odorant-binding proteins (OBPs) that could be used effectively towards the control of agricultural pests

  • We found that BdorCSP3 had antennae-specific expression profile, which may be critical for the perception of some host volatiles as reported previously through binding assays and RNAi coupled with electrophysiological tests [10]

Read more

Summary

Introduction

Chemoreception plays a crucial role in insects such as agricultural pests, disease vectors and social insects These insects use two sensations, olfaction and gustation, to evaluate and locate food sources, shelter, mates, and oviposition sites as well as to avoid predators and other dangers [1,2,3,4,5]. Chemosensory proteins are widely used by tephritid fruit flies to locate host plants and thereby cause major losses in fruits and vegetables worldwide. Because of their devastating impact on agriculture they are often the target of intense insecticide applications in order to protect commercial production of agricultural crops. Since sporadic outbreaks of the pest have been reported worldwide, this fly has been the target of global integrated pest management [16,17,18]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call