Abstract

The CXC chemokine ligand CXCL12 and its receptor CXCR4 play critical roles in stem-cell homing, infectious diseases, and cancer, which led the CXCL12/CXCR4 signaling axis to attract much attention in drug discovery. CXCR4 is regarded as the primary target while CXCL12 is considered too small to be a druggable target. In this paper, we employed virtual screening approaches and ligand-based NMR screening methods from a SPECS library and in-house natural products to discover new CXCR12 inhibitors. Four natural triterpene saponins were confirmed, and the triterpene sapogenin was identified as the main binding epitope by saturation transfer difference-nuclear magnetic resonance and molecular docking studies. The pentacyclic triterpene scaffold and its elucidated structure-activity relationships provide a new and valuable research direction for the development of novel CXCL12 inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.