Abstract

Pathogenic microorganisms often have the ability to attach to a surface, building a complex matrix where they colonize to form a biofilm. This cellular superstructure can display increased resistance to antibiotics and cause serious, persistent health problems in humans. Here we describe a high-throughput in vitro screen to identify inhibitors of Acinetobacter baumannii biofilms using a library of natural product extracts derived from marine microbes. Analysis of extracts derived from Streptomyces gandocaensis results in the discovery of three peptidic metabolites (cahuitamycins A–C), with cahuitamycin C being the most effective inhibitor (IC50=14.5 μM). Biosynthesis of cahuitamycin C proceeds via a convergent biosynthetic pathway, with one of the steps apparently being catalysed by an unlinked gene encoding a 6-methylsalicylate synthase. Efforts to assess starter unit diversification through selective mutasynthesis lead to production of unnatural analogues cahuitamycins D and E of increased potency (IC50=8.4 and 10.5 μM).

Highlights

  • Pathogenic microorganisms often have the ability to attach to a surface, building a complex matrix where they colonize to form a biofilm

  • We show that the cahuitamycins are derived from two independent starter unit pathways, one of which is genetically unlinked to the core cluster

  • The active extracts were further prioritized by setting the inhibition threshold to 50% followed by a dose–response assay, yielding 31 active natural product extract (NPE) (Supplementary Figs 1–2)

Read more

Summary

Introduction

Pathogenic microorganisms often have the ability to attach to a surface, building a complex matrix where they colonize to form a biofilm. This study revealed the extract from Streptomyces gandocaensis to be of particular interest due to its ability to inhibit biofilm formation, but showing a limited effect on A. baumannii growth (Supplementary Figs 1–3).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.