Abstract

SUMMARYThe partial correlation coefficient with information theory (PCIT) method is an important technique for detecting interactions between networks. The PCIT algorithm has been used in the biological context to infer complex regulatory mechanisms and interactions in genetic networks, in genome wide association studies, and in other similar problems. In this work, the PCIT algorithm is re‐implemented with exemplary parallel, vector, input/output (I/O), memory, and instruction optimizations for today's multi‐core and many‐core architectures. The evolution and performance of the new code targets the processor architectures of the Stampede supercomputer but will also benefit other architectures. The Stampede system consists of an Intel Xeon E5 processor base system with an innovative component consist of Intel Xeon Phi Coprocessors. Optimized results and an analysis are presented for both the Xeon and the Xeon Phi. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.