Abstract

Antibiotic resistance is rapidly exacerbating the unceasing rise in nosocomial infections caused by drug-resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin-resistant Enterococcus (VRE). Therefore, there is a dire need for new therapeutic agents that can mitigate the unbridled emergence of drug-resistant pathogens. In the present study, several benzoxazole-thiazolidinone hybrids (BT hybrids) were synthesized and evaluated for their antibacterial activity against the ESKAP pathogen panel. The preliminary screening revealed the selective and potent inhibitory activity of hydroxy BT hybrids against S. aureus with MIC ≤ 4 μg mL-1. Hydroxy compounds (BT25, BT26, BT18, BT12, and BT11) exhibited a good selectivity index (SI > 20), which were determined to be non-toxic to Vero cells. An engaging fact is that two compounds BT25 and BT26 showed potent activity against various clinically-relevant and highly drug resistant S. aureus (MRSA & VRSA) and Enterococcus (VRE) isolates. These hybrids showed concentration-dependent bactericidal activity that is comparable to vancomycin. These experimental results were corroborated with docking, molecular dynamics, and free energy studies to discern the antibacterial mechanisms of hydroxy BT hybrids with three bacterial enzymes DNA gyrase B, MurB, and penicillin binding protein 4 (PBP4). The reassuring outcome of the current investigation confirmed that the aforementioned BT hybrids could be used as very promisingly potent antibacterial agents for the treatment of Staphylococcus aureus and Enterococcus infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call