Abstract

Several membranes of the kidney are highly water permeable, thereby enabling this organ to retain large quantities of water. Recently, the molecular identification of water channels responsible for this high water permeability has finally been accomplished. At present, four distinct renal water channels have been identified, all members of the family of major intrinsic proteins. Aquaporin 1 (AQP1), aquaporin 2 (AQP2) and the mercury-insensitive water channel (MIWC) are water-selective channel proteins, whereas the fourth, referred to as aquaporin 3 (AQP3), permits transport of urea and glycerol as well. Furthermore, a putative renal water channel (WCH3) has been found. AQP1 is expressed in apical and basolateral membranes of proximal tubules and descending limbs of Henle, AQP2 predominantly in apical membranes of principal and inner medullary collecting duct cells and AQP3 in basolateral membranes of kidney collecting duct cells. MIWC is expressed in the inner medulla of the kidney and has been suggested to be localised in the vasa recta. The human genes encoding AQP1 and AQP2 have been cloned, permitting deduction of their amino acid sequence, prediction of their two-dimensional structure by hydropathy analysis, speculations on their way of functioning and DNA analysis in patients with diseases possibly caused by mutant aquaporins. Mutations in the AQP1 gene were recently detected in clinically normal individuals, a finding which contradicts the presumed vital importance of this protein. Mutations in the AQP2 gene were shown to cause autosomal recessive nephrogenic diabetes insipidus. The renal unresponsiveness to arginine vasopressin, which characterises this disease, is in accordance with the assumption that AQP2 is the effector protein of the renal vasopressin pathway.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call