Abstract
Ischemic stroke is a leading cause of death worldwide, and it remains an urgent task to develop novel and alternative therapeutic strategies for the disease. We previously reported the positive effects of Guhong injection (GHI), composed of safflower extract and aceglutamide, in promoting functional recovery in ischemic stroke mice. However, the active substances and pharmacological mechanism of GHI is still elusive. Aiming to identify the active anti-stroke components in GHI, here we conducted a multi-phenotypic screening in zebrafish models of phenylhydrazine-induced thrombosis and ponatinib-induced cerebral ischemia. Peripheral and cerebral blood flow was quantified endogenously in erythrocytes fluorescence-labeled thrombosis fish, and baicalein and rutin were identified as major anti-thrombotic substances in GHI. Moreover, using a high-throughput video-tracking system, the effects of locomotion promotion of GHI and its main compounds were analyzed in cerebral ischemia model. Chlorogenic acid and gallic acid showed significant effects in preventing locomotor dyfunctions. Finally, GHI treatment greatly decreased the expression levels of coagulation factors F7 and F2, NF-κB and its mediated proinflammatory cytokines in the fish models. Molecular docking suggested strong affinities between baicalein and F7, and between active substances (baicalein, chlorogenic acid, gallic acid, and rutin) and NF-κB p65. In summary, our findings established a novel drug discovery method based on multi-phenotypic screening of zebrafish, provided endogenous evidences of GHI in preventing thrombus formation and promoting behavioral recovery after cerebral ischemia, and identified baicalein, rutin, chlorogenic acid, and gallic acid as active compounds in the management of ischemic stroke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.