Abstract

Herein, we describe the discovery of a potent, selective, brain-penetrating, in vivo active phosphodiesterase (PDE) 2A inhibitor lead series. To identify high-quality leads suitable for optimization and enable validation of the physiological function of PDE2A in vivo, structural modifications of the high-throughput screening hit 18 were performed. Our lead generation efforts revealed three key potency-enhancing functionalities with minimal increases in molecular weight (MW) and no change in topological polar surface area (TPSA). Combining these structural elements led to the identification of 6-methyl-N-((1R)-1-(4-(trifluoromethoxy)phenyl)propyl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (38a), a molecule with the desired balance of preclinical properties. Further characterization by cocrystal structure analysis of 38a bound to PDE2A uncovered a unique binding mode and provided insights into its observed potency and PDE selectivity. Compound 38a significantly elevated 3',5'-cyclic guanosine monophosphate (cGMP) levels in mouse brain following oral administration, thus validating this compound as a useful pharmacological tool and an attractive lead for future optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.