Abstract

Chemical warfare agents (CWAs) are regarded as a critical challenge in our society. Here, we use a high-throughput computational screening strategy backed up by experimental validation to identify and synthesize a promising porous material for CWA removal under humid conditions. Starting with a database of 2,932 existing metal–organic framework (MOF) structures, we selected those possessing cavities big enough to adsorb well-known CWAs such as sarin, soman, and mustard gas as well as their nontoxic simulants. We used Widom method to reduce significantly the simulation time of water adsorption, allowing us to shortlist 156 hydrophobic MOFs where water will not compete with the CWAs to get adsorbed. We then moved to grand canonical Monte Carlo (GCMC) simulations to assess the removal capacity of CWAs. We selected the best candidates in terms of performance but also in terms of chemical stability and moved to synthesis and experimental breakthrough adsorption to probe the predicted, excellent performance. Th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.