Abstract

During the latest outbreak of Ebola virus disease in West Africa, monoclonal antibody therapy (e.g., ZMapp) was utilized to treat patients. However, due to the antigenic differences among the five ebolavirus species, the current therapeutic monoclonal antibodies are only effective against viruses of the species Zaire ebolavirus. Although this particular species has indeed caused the majority of human infections in Central and, recently, West Africa, other ebolavirus species (e.g., Sudan ebolavirus and Bundibugyo ebolavirus) have also repeatedly caused outbreaks in Central Africa and thus should not be neglected in the development of countermeasures against ebolaviruses. Here we report the generation of an ebolavirus glycoprotein-specific monoclonal antibody that effectively inhibits cellular entry of representative isolates of all known ebolavirus species in vitro and show its protective efficacy in mouse models of ebolavirus infections. This novel neutralizing monoclonal antibody targets a highly conserved internal fusion loop in the glycoprotein molecule and prevents membrane fusion of the viral envelope with cellular membranes. The discovery of this highly cross-neutralizing antibody provides a promising option for broad-acting ebolavirus antibody therapy and will accelerate the design of improved vaccines that can selectively elicit cross-neutralizing antibodies against multiple species of ebolaviruses.

Highlights

  • During the latest outbreak of Ebola virus disease in West Africa, monoclonal antibody therapy (e.g., ZMapp) was utilized to treat patients

  • Five distinct species are known in the genus Ebolavirus, Zaire ebolavirus, Sudan ebolavirus, Taï forest ebolavirus, Bundibugyo ebolavirus, and Reston ebolavirus, represented by Ebola virus (EBOV), Sudan virus (SUDV), Taï forest virus (TAFV), Bundibugyo virus (BDBV), and Reston virus (RESTV), respectively[3]

  • monoclonal antibody (MAb) 6D6 was found to be GP-specific and to efficiently neutralize the infectivity of vesicular stomatitis virus (VSV) pseudotyped with GPs of all known ebolaviruses (EBOV, SUDV, TAFV, BDBV, and RESTV), including the variant that caused the latest outbreak in West Africa (EBOV2014), but not Marburg virus (MARV), a related filovirus that causes human disease similar to Ebola virus disease (EVD) (Fig. 1a)

Read more

Summary

Introduction

During the latest outbreak of Ebola virus disease in West Africa, monoclonal antibody therapy (e.g., ZMapp) was utilized to treat patients. We report the generation of an ebolavirus glycoprotein-specific monoclonal antibody that effectively inhibits cellular entry of representative isolates of all known ebolavirus species in vitro and show its protective efficacy in mouse models of ebolavirus infections. This novel neutralizing monoclonal antibody targets a highly conserved internal fusion loop in the glycoprotein molecule and prevents membrane fusion of the viral envelope with cellular membranes. Since SUDV and BDBV have shown their potential to cause public health emergencies during several outbreaks in Central Africa, it is difficult to determine the priority for development of countermeasure against those ebolaviruses

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call