Abstract

The highly selective hydrogenation to remove olefins is a significant refining approach for the reformate. Herein, a library of transition metal for reformate hydrogenation is tested experimentally to validate the predictive level of catalytic activity from our theoretical framework, which combines ab initio calculations and microkinetic modeling, with consideration of surface H-coverage effect on hydrogenation kinetics. The favorable H coverage of specific alloy surface under relevant hydrogenation condition, is found to be determined by its corresponding alloy composition. Besides, olefin hydrogenation rate is determined as a function of two descriptors, i.e. H coverage and binding energies of atomic hydrogen, paving the way to computationally screen on metal component in the periodic table. Evaluation of 172 bimetallic alloys based on the activity volcano map, as well as benzene hydrogenation rate, identifies prospective superior candidates and experimentally confirms that Zn3Ir1 outperforms pure Pd catalysts for the selective hydrogenation refining of reformate. The insights into H-coverage-related microkinetic modelling have enabled us to both theoretically understand experimental findings and identify novel catalysts, thus, bridging the gap between first-principle simulations and industrial applications. This work provides useful guidance for experimental catalyst design, which can be easily extended to other hydrogenation reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.