Abstract
Extracellular adenosine (ADO), present in high concentrations in the tumor microenvironment (TME), suppresses immune function via inhibition of T cell and NK cell activation. Intratumoral generation of ADO depends on the sequential catabolism of ATP by two ecto-nucleotidases, CD39 (ATP → AMP) and CD73 (AMP → ADO). Inhibition of CD73 eliminates a major pathway of ADO production in the TME and can reverse ADO-mediated immune suppression. Extensive interrogation of structure-activity relationships (SARs), structure-based drug design, and optimization of pharmacokinetic properties culminated in the discovery of AB680, a highly potent (Ki = 5 pM), reversible, and selective inhibitor of CD73. AB680 is further characterized by very low clearance and long half-lives across preclinical species, resulting in a PK profile suitable for long-acting parenteral administration. AB680 is currently being evaluated in phase 1 clinical trials. Initial data show AB680 is well tolerated and exhibits a pharmacokinetic profile suitable for biweekly (Q2W) iv-administration in human.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.