Abstract

Abstract We report on CO and H i studies of the mixed-morphology supernova remnant (SNR) G346.6−0.2. We find a wind-blown bubble along the radio continuum shell with an expansion velocity of ∼10 km s−1, which was likely formed by strong stellar winds from the high-mass progenitor of the SNR. The radial velocities of the CO/H i bubbles at V LSR = −82 to −59 km s−1 are also consistent with those of shock-excited 1720 MHz OH masers. The molecular cloud in the northeastern shell shows a high kinetic temperature of ∼60 K, suggesting that shock heating occurred. The H i absorption studies imply that G346.6−0.2 is located on the farside of the Galactic center from us, and the kinematic distance of the SNR is derived to be 11.1 − 0.3 + 0.5 kpc. We find that the CO line intensity has no specific correlation with the electron temperature of recombining plasma, implying that the recombining plasma in G346.6−0.2 was likely produced by adiabatic cooling. With our estimates of the interstellar proton density of 280 cm−3 and gamma-ray luminosity <5.8 × 1034 erg s−1, the total energy of accelerated cosmic rays of W p < 9.3 × 1047 erg is obtained. A comparison of the age–W p relation to other SNRs suggests that most of the accelerated cosmic rays in G346.6−0.2 have escaped from the SNR shell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call