Abstract

The current worldwide emergence of carbapenem-resistant enterobacterales (CREs) constitutes an important growing clinical and public health threat. Acquired carbapenemases are the most important determinants of resistance to carbapenems. In the development of the previously reported tricyclic β-lactam skeleton which exhibits potent antibacterial activities against several problematic β-lactamase-producing CREs without a β-lactamase inhibitor, we found that these activities were reduced against clinical isolates with resistance mechanisms other than β-lactamase production. These mechanisms were the reduction of outer membrane permeability with the production of β-lactamases and the insertion of four amino acids into penicillin-binding protein 3. Here, we report the discovery of a potent compound that overcomes these resistance mechanisms by the conversion of the alkoxyimino moiety of the aminothiazole side chain in which a hydrophilic functional group is introduced and the carboxylic acid of the alkoxyimino moiety is converted to reduce the negative charge of the whole molecule from 2 to 1. This potent tricyclic β-lactam is a promising drug candidate for infectious diseases caused by CREs due to its potent therapeutic efficacy in the neutropenic mouse lung infection model and low frequency of producing spontaneously resistant mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.