Abstract

Abstract We discover an unidentified strong emission feature in the X-ray spectrum of EXO 1745−248 obtained by RXTE at 40 hr after the peak of a superburst. The structure was centered at 6.6 keV and significantly broadened with a large equivalent width of 4.3 keV, corresponding to a line photon flux of 4.7 × 10−3 ph cm−2 s−1. The 3–20 keV spectrum was reproduced successfully by a power-law continuum with narrow and broad (2.7 keV in full width at half maximum) Gaussian emission components. Alternatively, the feature can be described by four narrow Gaussians, centered at 5.5 keV, 6.5 keV, 7.5 keV, and 8.6 keV. Considering the strength and shape of the feature, it is unlikely to have originated from reflection of the continuum X-rays by some optically thick material, such as an accretion disk. Moreover, the intensity of the emission structure decreased significantly with an exponential time scale of 1 hr. The feature was not detected in an INTEGRAL observation performed 10 hr before the RXTE observation with a line flux upper limit of 1.5 × 10−3 ph cm−2 s−1. The observed emission structure is consistent with gravitationally redshifted charge exchange emission from Ti, Cr, Fe, and Co. We suggest that the emission results from a charge exchange interaction between a highly metal-enriched fall-back ionized burst wind and an accretion disk, at a distance of ∼60 km from the neutron star. If this interpretation is correct, the results provide new information on nuclear burning processes during thermonuclear X-ray bursts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.